Background: Reduced estimated glomerular filtration rate (eGFR) using the cystatin-C derived equations might be a better predictor of cardiovascular disease (CVD) mortality compared with the creatinine-derived equations, but this association remains unclear in elderly individuals.
Aim: The aims of this study were to compare the predictive values of the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)-creatinine, CKD-EPI-cystatin C and CKD-EPI-creatinine-cystatin C eGFR equations for all-cause mortality and CVD events (hospitalizations±mortality).
Methods: Prospective cohort study of 1165 elderly women aged>70 years. Associations between eGFR and outcomes were examined using Cox regression analysis. Test accuracy of eGFR equations for predicting outcomes was examined using Receiver Operating Characteristic (ROC) analysis and net reclassification improvement (NRI).
Results: Risk of all-cause mortality for every incremental reduction in eGFR determined using CKD-EPI-creatinine, CKD-EPI-cystatin C and the CKD-EPI-creatinine-cystatic C equations was similar. Areas under the ROC curves of CKD-EPI-creatinine, CKD-EPI-cystatin C and CKD-EPI-creatinine-cystatin C equations for all-cause mortality were 0.604 (95%CI 0.561-0.647), 0.606 (95%CI 0.563-0.649; p = 0.963) and 0.606 (95%CI 0.563-0.649; p = 0.894) respectively. For all-cause mortality, there was no improvement in the reclassification of eGFR categories using the CKD-EPI-cystatin C (NRI -4.1%; p = 0.401) and CKD-EPI-creatinine-cystatin C (NRI -1.2%; p = 0.748) compared with CKD-EPI-creatinine equation. Similar findings were observed for CVD events.
Conclusion: eGFR derived from CKD-EPI cystatin C and CKD-EPI creatinine-cystatin C equations did not improve the accuracy or predictive ability for clinical events compared to CKD-EPI-creatinine equation in this cohort of elderly women.