A novel bilayer coating (HT24h) was fabricated on magnesium using microarc oxidation (MAO) and hydrothermal treatment (HT). The coating comprises an outer layer of narrow interrod spaced hydroxyapatite (HA) nanorods and an inner layer of MgO containing Mg(OH)2/HA-sealing-pores. The hydrothermal formation mechanism of HA nanorods on MAO-formed MgO was explored. Also, evolution of structure and bonding integrity of HT24h coating with immersion in physiological saline (PS) for 0-90 days, corrosion resistance and cytocompatibility of the coating were investigated, together with MgO containing Mg(OH)2-sealing-pores (HT2h) and porous MgO (MAO) coatings. Corrosion resistance was identified by three-point bending and electrochemical tests in PS, while cytocompatibility was determined by MTT, live/dead staining, and vinculin-actin-nucleus tricolor staining assays of hFOB1.19 cells. Immersion tests indicate that cracking rather than delamination is a common feature in most areas of the coatings up to day 90 and degradation is the reason for thinning in thickness of the coatings. MAO and HT2h coatings exhibit a significant thinning due to fast degradation of MgO. However, HT24h coating shows a quite small thinning, owing to the fact that the HA nanorods underwent quite slow degradation while the underlying MgO only underwent conversion to Mg(OH)2 without dissolution of the Mg(OH)2. Scratch tests reveal that HT24h coating still retains relatively high bonding integrity, although the failure position changes from the MgO interior to a point between the HA and MgO layers after 90 days of immersion. HT24h coating appears far more effective than MAO and HT2h coatings in reducing degradation and maintaining the mechanical integrity of Mg, as well as enhancing the mitochondrial activity, adhesion, and proliferation of osteoblasts.
Keywords: HA nanorod; bilayer coating; cytocompatibility; degradation behavior; magnesium; mechanical integrity.