Background: Diabetes in pregnancy affects fetal growth and development. The insulin/insulin-like growth factors (IGF) system comprising insulin, IGF, their receptors, and binding proteins, has been implicated in fetal growth regulation. This study tested the hypothesis that maternal diabetes alters the fetal insulin/IGF system in a tissue-specific manner.
Methods: Wistar rats were rendered diabetic by neonatal administration of streptozotocin and mated with control rats. At day 21 of gestation, the weights of fetuses, placentas, and fetal organs (heart, lung, liver, stomach, intestine, and pancreas) were determined. Maternal and fetal plasma concentrations of insulin, IGF1, and IGF2 were measured by ELISA, and expression of IGF1, IGF2, IGF1R, IGF2R, IR, IGFBP1, BP2, and BP3 in placenta and fetal organs by qPCR.
Results: The well-known increase in fetal growth in this model of mild diabetes is accompanied by elevated insulin and IGF1 levels and alterations of the insulin/IGF system in the fetus and the placenta. These alterations were organ and gene specific. The insulin/IGF system was generally upregulated, especially in the fetal heart, while it was downregulated in fetal lung.
Conclusion: In our model of mild diabetes, the effect of maternal diabetes on fetal weight and fetal insulin/IGF system expression is organ specific with highly sensitive organs such as lung and heart, and organs that were less affected, such as stomach.