An image-based genetic assay identifies genes in T1D susceptibility loci controlling cellular antiviral immunity in mouse

PLoS One. 2014 Sep 30;9(9):e108777. doi: 10.1371/journal.pone.0108777. eCollection 2014.

Abstract

The pathogenesis of complex diseases, such as type 1 diabetes (T1D), derives from interactions between host genetics and environmental factors. Previous studies have suggested that viral infection plays a significant role in initiation of T1D in genetically predisposed individuals. T1D susceptibility loci may therefore be enriched in previously uncharacterized genes functioning in antiviral defense pathways. To identify genes involved in antiviral immunity, we performed an image-based high-throughput genetic screen using short hairpin RNAs (shRNAs) against 161 genes within T1D susceptibility loci. RAW 264.7 cells transduced with shRNAs were infected with GFP-expressing herpes simplex virus type 1 (HSV-1) and fluorescent microscopy was performed to assess the viral infectivity by fluorescence reporter activity. Of the 14 candidates identified with high confidence, two candidates were selected for further investigation, Il27 and Tagap. Administration of recombinant IL-27 during viral infection was found to act synergistically with interferon gamma (IFN-γ) to activate expression of type I IFNs and proinflammatory cytokines, and to enhance the activities of interferon regulatory factor 3 (IRF3). Consistent with a role in antiviral immunity, Tagap-deficient macrophages demonstrated increased viral replication, reduced expression of proinflammatory chemokines and cytokines, and decreased production of IFN-β. Taken together, our unbiased loss-of-function genetic screen identifies genes that play a role in host antiviral immunity and delineates roles for IL-27 and Tagap in the production of antiviral cytokines.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Chemokines / genetics
  • Chemokines / metabolism
  • Cytokines / genetics
  • Cytokines / metabolism
  • Diabetes Mellitus, Type 1 / genetics*
  • Diabetes Mellitus, Type 1 / pathology
  • Disease Susceptibility
  • GTPase-Activating Proteins / deficiency
  • GTPase-Activating Proteins / genetics
  • GTPase-Activating Proteins / metabolism
  • Genetic Loci
  • Herpesvirus 1, Human / genetics
  • Herpesvirus 1, Human / physiology
  • High-Throughput Screening Assays
  • Immunity, Cellular* / drug effects
  • Interferon Regulatory Factor-3 / genetics
  • Interferon Regulatory Factor-3 / metabolism
  • Interferon-beta / genetics
  • Interferon-beta / metabolism
  • Interferon-gamma / pharmacology
  • Interleukin-27 / genetics
  • Interleukin-27 / metabolism
  • Interleukin-27 / pharmacology
  • Macrophages / cytology
  • Macrophages / drug effects
  • Macrophages / metabolism
  • Mice
  • Microscopy, Fluorescence
  • RNA, Small Interfering / genetics
  • RNA, Small Interfering / metabolism
  • Recombinant Proteins / biosynthesis
  • Recombinant Proteins / genetics
  • Recombinant Proteins / pharmacology
  • Virus Replication

Substances

  • Chemokines
  • Cytokines
  • GTPase-Activating Proteins
  • Interferon Regulatory Factor-3
  • Interleukin-27
  • RNA, Small Interfering
  • Recombinant Proteins
  • Interferon-beta
  • Interferon-gamma

Grants and funding

This research was funded by the Leona M. and Harry B. Helmsley Charitable Trust (www.helmsleytrust.org) and Juvenile Diabetes Research Foundation (www.jdrf.org). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.