Bolometer detection of magnetic resonances in nanoscaled objects

Nanotechnology. 2014 Oct 24;25(42):425302. doi: 10.1088/0957-4484/25/42/425302. Epub 2014 Oct 1.

Abstract

We report on a nanoscaled thermocouple (ThC) as a temperature sensor of a highly sensitive bolometer for probing the dissipative damping of spin dynamics in nanosized Permalloy (Py) stripes. The Au-Pd ThC based device is fabricated by standard electron beam lithography on a 200 nm silicon nitride membrane to minimize heat dissipation through the substrate. We show that this thermal sensor allows not only measurements of the temperature change on the order of a few mK due to the uniform resonant microwave (MW) absorption by the Py stripe but also detection of standing spin waves of different mode numbers. Using a 3D finite element method, we estimate the absorbed MW power by the stripe in resonance and prove the necessity of using substrates with an extremely low heat dissipation like a silicon nitride membrane for successful thermal detection. The voltage responsivity and the noise equivalent power for the ThC-based bolometer are equal to 15 V W(-1) and 3 nW Hz(-1/2), respectively. The ThC device offers a magnetic resonance response of 1 nV/(μ(B) W) corresponding to a sensitivity of 10(9) spins and a temperature resolution of 300 μK under vacuum conditions.

Publication types

  • Research Support, Non-U.S. Gov't