SKULL-STRIPPING WITH DEFORMABLE ORGANISMS

Proc IEEE Int Symp Biomed Imaging. 2011:1662-1665. doi: 10.1109/ISBI.2011.5872723.

Abstract

Segmenting brain from non-brain tissue within magnetic resonance (MR) images of the human head, also known as skull-stripping, is a critical processing step in the analysis of neuroimaging data. Though many algorithms have been developed to address this problem, challenges remain. In this paper, we apply the "deformable organism" framework to the skull-stripping problem. Within this framework, deformable models are equipped with higher-level control mechanisms based on the principles of artificial life, including sensing, reactive behavior, knowledge representation, and proactive planning. Our new deformable organisms are governed by a high-level plan aimed at the fully-automated segmentation of various parts of the head in MR imagery, and they are able to cooperate in computing a robust and accurate segmentation. We applied our segmentation approach to a test set of human MRI data using manual delineations of the data as a reference "gold standard." We compare these results with results from three widely used methods using set-similarity metrics.

Keywords: MRI; deformable models; deformable organisms; segmentation; skull-stripping.