The tumor microenvironment (TME) is a complex heterogeneous assembly composed of a variety of cell types and physical features. One such feature, hypoxia, is associated with metabolic reprogramming, the epithelial-mesenchymal transition, and therapeutic resistance. Many questions remain regarding the effects of hypoxia on these outcomes; however, only a few experimental methods enable both precise control over oxygen concentration and real-time imaging of cell behavior. Recent efforts with microfluidic platforms offer a promising solution to these limitations. In this review, we discuss conventional methods and tools used to control oxygen concentration for cell studies, and then highlight recent advances in microfluidic-based approaches for controlling oxygen in engineered platforms.
Keywords: hypoxia; microfluidics; tumor microenvironment.
Copyright © 2014 Elsevier Ltd. All rights reserved.