Warfarin pharmacogenetics

Trends Cardiovasc Med. 2015 Jan;25(1):33-41. doi: 10.1016/j.tcm.2014.09.001. Epub 2014 Sep 6.

Abstract

The cytochrome P450 (CYP) 2C9 and vitamin K epoxide reductase complex 1 (VKORC1) genotypes have been strongly and consistently associated with warfarin dose requirements, and dosing algorithms incorporating genetic and clinical information have been shown to be predictive of stable warfarin dose. However, clinical trials evaluating genotype-guided warfarin dosing produced mixed results, calling into question the utility of this approach. Recent trials used surrogate markers as endpoints rather than clinical endpoints, further complicating translation of the data to clinical practice. The present data do not support genetic testing to guide warfarin dosing, but in the setting where genotype data are available, use of such data in those of European ancestry is reasonable. Outcomes data are expected from an on-going trial, observational studies continue, and more work is needed to define dosing algorithms that incorporate appropriate variants in minority populations; all these will further shape guidelines and recommendations on the clinical utility of genotype-guided warfarin dosing.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Anticoagulants / administration & dosage*
  • Cytochrome P-450 CYP2C9 / genetics*
  • Genotype
  • Humans
  • Pharmacogenetics*
  • Vitamin K Epoxide Reductases / genetics*
  • Warfarin / administration & dosage*

Substances

  • Anticoagulants
  • Warfarin
  • CYP2C9 protein, human
  • Cytochrome P-450 CYP2C9
  • VKORC1 protein, human
  • Vitamin K Epoxide Reductases