A facile method is needed to control the protein adsorption onto biomaterials, such as, bone implants. Herein we doped taurocholic acid (TCA), an amphiphilic biomolecule, into an array of 1D nano-architectured polypyrrole (NAPPy) on the implants. Doping TCA enabled the implant surface to show reversible wettability between 152° (superhydrophobic, switch-on state) and 55° (hydrophilic, switch-off state) in response to periodically switching two weak electrical potentials (+0.50 and -0.80 V as a switch-on and switch-off potential, respectively). The potential-switchable reversible wettability, arising from the potential-tunable orientation of the hydrophobic and hydrophilic face of TCA, led to potential-switchable preferential adsorption of proteins as well as cell adhesion and spreading. This potential-switchable strategy may open up a new avenue to control the biological activities on the implant surface.
Keywords: bone implants; conducting polymers; polypyrroles; protein adsorption; wettability.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.