Traditionally, physical features in musical chords have been proposed to be at the root of consonance perception. Alternatively, recent studies suggest that different types of experience modulate some perceptual foundations for musical sounds. The present study tested whether the mechanisms involved in the perception of consonance are present in an animal with no extensive experience with harmonic stimuli and a relatively limited vocal repertoire. In Experiment 1, rats were trained to discriminate consonant from dissonant chords and tested to explore whether they could generalize such discrimination to novel chords. In Experiment 2, we tested if rats could discriminate between chords differing only in their interval ratios and generalize them to different octaves. To contrast the observed pattern of results, human adults were tested with the same stimuli in Experiment 3. Rats successfully discriminated across chords in both experiments, but they did not generalize to novel items in either Experiment 1 or Experiment 2. On the contrary, humans not only discriminated among both consonance-dissonance categories, and among sets of interval ratios, they also generalized their responses to novel items. These results suggest that experience with harmonic sounds may be required for the construction of categories among stimuli varying in frequency ratios. However, the discriminative capacity observed in rats suggests that at least some components of auditory processing needed to distinguish chords based on their interval ratios are shared across species.
PsycINFO Database Record (c) 2015 APA, all rights reserved.