The immunological synapse (IS) is a supermolecular activation cluster formed between T cells and antigen-presenting cells. Although diverse IS structures have been reported, the function of the IS in T-cell activation remains unclear. Here, we found that the bullseye IS, one of IS types at the interface of CD4(+) T cells and staphylococcal enterotoxin B-pulsed dendritic cells, suppressed CD4(+) T-cell activation, whereas multifocal IS, another synapse type, stimulated CD4(+) T-cell activation. Consistent with these results, bullseye IS formation was accompanied by a low-level calcium response in T cells and a loss of T-cell receptor signalling molecules from the synapse, whereas multifocal IS exhibited the opposite. Furthermore, we found that CD4(+)CD25(+) regulatory T cells (T(regs)) more efficiently formed bullseye IS and promoted bullseye IS formation in CD4(+) CD25(-) T cells. Cytotoxic T-lymphocyte antigen-4 (CTLA-4), an inhibitory molecule expressed continuously on T(regs), was localised in bullseye IS. Moreover, blocking CTLA-4 reduced the percentage of bullseye IS formation and promoted T-cell activation. Our data thus indicate that bullseye IS formation is mediated by CTLA-4, and may negatively control T-cell activation as a suppressive synapse.