The aim of the present study was to determine the roles of the WWOX tumor suppressor and cancer-related genes in bladder tumor carcinogenesis. Reverse transcription-quantitative polymerase chain reaction was used to analyze the status of WWOX promoter methylation (using MethylScreen™ technology) and loss of heterozygosity (LOH) in papillary urothelial cancer tissues. The associations between the expression levels of the following tumorigenesis-related genes were also assessed: The WWOX tumor suppressor gene, the MKI67 proliferation gene, the BAX, BCL2 and BIRC5 apoptotic genes, the EGFR signal transduction gene, the VEGF vascular endothelial growth factor gene, and the CCND1 and CCNE1 cell cycle genes. The results reveal a high frequency of LOH in intron 1 in the WWOX gene, as well as an association between reduced WWOX expression levels and increased promoter methylation. In addition, the present study demonstrates that in bladder tumors, apoptosis is inhibited by increased expression levels of the BCL2 gene. A correlation between the proliferation indices of the MKI67 and the BIRC5 genes was also revealed. Furthermore, the expression levels of VEGF were identified to be positively associated with those of the EGFR gene.
Keywords: WWOX tumor suppressor; bladder cancer; loss of heterozygosity; methylation; reverse transcription-quantitative polymerase chain reaction.