No evidence of persisting unrepaired nuclear DNA single strand breaks in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT

PLoS One. 2014 Oct 10;9(10):e109774. doi: 10.1371/journal.pone.0109774. eCollection 2014.

Abstract

Background: It has been hypothesized in the literature that exposure to extremely low frequency electromagnetic fields (50 or 60 Hz) may lead to human health effects such as childhood leukemia or brain tumors. In a previous study investigating multiple types of cells from brain and kidney of the mouse (Acta Neuropathologica 2004; 107: 257-264), we found increased unrepaired nuclear DNA single strand breaks (nDNA SSB) only in epithelial cells of the choroid plexus in the brain using autoradiographic methods after a continuous eight-week 50 Hz magnetic field (MF) exposure of adult mice with flux density of 1.5 mT.

Methods: In the present study we tested the hypothesis that MF exposure with lower flux densities (0.1 mT, i.e., the actual exposure limit for the population in most European countries, and 1.0 mT) shows similar results to those in the previous study. Experiments and data analysis were carried out in a similar way as in our previous study.

Results: Continuous eight-week 50 Hz MF exposure with 0.1 mT or 1.0 mT did not result in increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice. MF exposure with 1.0 mT led to reduced unscheduled DNA synthesis (UDS) in epithelial cells in the choroid plexus of the fourth ventricle in the brain (EC-CP) and epithelial cells of the cortical collecting duct in the kidney, as well as to reduced mtDNA synthesis in neurons of the caudate nucleus in the brain and in EC-CP.

Conclusion: No evidence was found for increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT.

MeSH terms

  • Animals
  • Brain / cytology
  • Brain / radiation effects*
  • DNA Breaks, Single-Stranded / radiation effects*
  • DNA Damage / radiation effects*
  • DNA Repair / radiation effects*
  • Kidney / cytology
  • Kidney / radiation effects*
  • Liver / cytology
  • Liver / radiation effects*
  • Magnetic Fields*
  • Male
  • Mice
  • Neurons / cytology
  • Neurons / radiation effects

Grants and funding

The authors have no support or funding to report.