A novel approach to reinforce polymer porous membranes is presented. In the prepared hybrid materials, the inorganic phase of silica is synthesized in-situ and inside the pores of aminolyzed polylactic acid (PLA) membranes by sol-gel reactions using tetraethylorthosilicate (TEOS) and glycidoxypropyltrimethoxysilane (GPTMS) as precursors. The hybrid materials present a porous structure with a silica layer covering the walls of the pores while GPTMS serves also as coupling agent between the organic and inorganic phase. The adjustment of silica precursors ratio allows the modulation of the thermomechanical properties. Culture of mesenchymal stem cells on these supports in osteogenic medium shows the expression of characteristic osteoblastic markers and the mineralization of the extracellular matrix.
Keywords: organic-inorganic hybrid composites; porosity; proliferation and osteoblastic differentiation of cells; sol-gel processes; thermomechanical properties.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.