Objectives: To determine the sensitivity and specificity of AID TB Resistance line probe assay (AID Diagnostika, Germany) to detect Mycobacterium tuberculosis and its resistance to first- and second-line drugs in clinical samples using BACTEC 460TB as the reference standard.
Methods: The test consists on three strips to detect resistance to isoniazid/rifampicin, fluoroquinolones/ethambutol, and kanamycin/amikacin/capreomycin/streptomycin, respectively. This test was performed on 65 retrospectively selected clinical samples corresponding to 32 patients.
Results: A valid result was obtained for 92.3% (60/65), 90.8% (59/65) and 78.5% (51/65) of the samples tested, considering the three strips, respectively. Global concordance rates between AID and BACTEC for detecting resistance to isoniazid, rifampicin, fluoroquinolones, ethambutol, kanamycin/capreomycin and streptomycin were 98.3% (59/60), 100% (60/60), 91.5% (54/59), 72.9% (43/59), 100% (51/51) and 98.0% (50/51), respectively. Regarding the discordant results obtained between AID and BACTEC, the alternative molecular methods performed (GenoType MTBDRplus, GenoType MTBDRsl [Hain Lifescience, Germany] and/or pyrosequencing) confirmed the genotypic result in 90.9% (20/22) of the cases.
Conclusions: AID line probe assay is a useful tool for the rapid detection of drug resistance in clinical samples enabling an initial therapeutic approach. Nevertheless, for a correct management of drug resistant tuberculosis patients, molecular results should be confirmed by a phenotypic method.
Keywords: Extensively drug-resistant tuberculosis; Molecular diagnostic testing; Multi-drug resistance; Tuberculosis.
Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.