Ginsenoside-Rb2 inhibits dexamethasone-induced apoptosis through promotion of GPR120 induction in bone marrow-derived mesenchymal stem cells

Stem Cells Dev. 2015 Mar 15;24(6):781-90. doi: 10.1089/scd.2014.0367. Epub 2014 Dec 3.

Abstract

Apoptosis of bone marrow-derived mesenchymal stem cells (BMMSCs) is an essential pathogenic factor of osteoporosis. Ginsenoside-Rb2 (Rb2), a 20(S)-protopanaxadiol glycoside extracted from ginseng, is a potent treatment for bone loss, which raises interest regarding the bone metabolism area. In the present study, we found that dose-response Rb2 inhibited high dosage of dexamethasone (Dex)-induced apoptosis in primary murine BMMSCs. Interestingly, Rb2 promoted GPR120 induction, which is the unsaturated long-chain fatty acid receptor. We further confirmed that GPR120-specific ShRNA reversed the inhibition of Rb2 on Dex-induced apoptosis by activating caspase-3 and reducing cell viability. In addition, Rb2 notably increased phosphorylated ERK1/2 levels and Ras kinase activity dependently through the GPR120. The ERK1/2 activity-specific inhibitor U0126 remarkably blocked the Rb2-induced antiapoptotic effect in response to Dex-induced apoptosis. Together, dose-response Rb2 protected BMMSCs against Dex-induced apoptosis dependently by inducing GPR120 promoted Ras-ERK1/2 signaling pathway. Therefore, in the prevalence of the abuse of Dex in the clinic, our findings suggest for the first time that Rb2 is not only a key to understand the link between Chinese medicine and the pathology of osteoporosis but also an underlying target for the treatment of bone complications in the foreseeable future.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Apoptosis*
  • Cells, Cultured
  • Dexamethasone / toxicity
  • Ginsenosides / pharmacology*
  • Mesenchymal Stem Cells / drug effects*
  • Mesenchymal Stem Cells / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Receptors, G-Protein-Coupled / genetics
  • Receptors, G-Protein-Coupled / metabolism*

Substances

  • Antineoplastic Agents
  • FFAR4 protein, mouse
  • Ginsenosides
  • Receptors, G-Protein-Coupled
  • ginsenoside Rb2
  • Dexamethasone