Supercontinuum up-conversion via molecular modulation in gas-filled hollow-core PCF

Opt Express. 2014 Aug 25;22(17):20566-73. doi: 10.1364/OE.22.020566.

Abstract

We report on the efficient, tunable, and selective frequency up-conversion of a supercontinuum spectrum via molecular modulation in a hydrogen-filled hollow-core photonic crystal fiber. The vibrational Q(1) Raman transition of hydrogen is excited in the fiber by a pump pre-pulse, enabling the excitation of a synchronous, collective oscillation of the molecules. This coherence wave is then used to up-shift the frequency of an arbitrarily weak, delayed probe pulse. Perfect phase-matching for this process is achieved by using higher order fiber modes and adjusting the pressure of the filling gas. Conversion efficiencies of ~50% are obtained within a tuning range of 25 THz.