The transcription factor Mohawk (Mkx) is expressed in developing tendons and is an important regulator of tenogenic differentiation. However, the exact roles of Mkx in tendinopathy and tendon repair remain unclear. Using gene expression Omnibus datasets and immunofluorescence assays, we found that Mkx expression level was dramatically lower in human tendinopathy tissue and it is activated at specific stages of tendon development. In mesenchymal stem cells (MSCs), ectopic Mkx expression strikingly promoted tenogenesis more efficiently than Scleraxis (Scx), a well-known master transcription factor of tendon. Significantly higher levels of tenogenic gene expression and collagen fibril growth were observed with Mkx versus Scx. Interestingly, it was observed that Mkx dramatically upregulated Scx through binding to the Tgfb2 promoter. Additionally, the transplantation of Mkx-expressing-MSC sheets promoted tendon repair in a mouse model of Achilles-tendon defect. Taken together, these data shed light on previously unrecognized roles of Mkx in tendinopathy, tenogenesis, and tendon repair as well as in regulating the TGFβ pathway.
Keywords: Differentiation; Mesenchymal stem cells; Mohawk; TGF-ß; Tendon.
© 2014 AlphaMed Press.