Collagen hydrogel has been widely used for osteochondral repair, but its mechanical properties cannot meet the requirements of clinical application. Previous studies have shown that the addition of either polysaccharide or inorganic particles could reinforce the polymer matrix. However, their synergic effects on collagen-based hydrogel have seldom been studied, and the potential application of triple-phased composite gel in osteochondral regeneration has not been reported. In this study, nano-hydroxyapatite (nano-HA) reinforced collagen-alginate hydrogel (nHCA) was prepared by the in situ synthesis of nano-HA in collagen gel followed by the addition of alginate and Ca(2+). The properties of triple-phased nHCA hydrogel were studied and compared with pure collagen and biphasic gels, and the triple-phased composite of collagen-alginate-HA gels showed a superiority in not only mechanical but also biological features, as evidenced by the enhanced tensile and compressive modulus, higher cell viability, faster cell proliferation and upregulated hyaline cartilage markers. In addition, it was found that the synthesis process could also affect the properties of the triple-phased composite, compared to blend-mixing HCA. The in situ-synthesized nHCA hydrogel showed an enhanced tensile modulus, as well as enhanced biological features compared with HCA. Our study demonstrated that the nHCA composite hydrogel holds promise in osteochondral regeneration. The addition of alginate and nano-HA contribute to the increase in both mechanical and biological properties. This study may provide a valuable reference for the design of an appropriate composite scaffold for osteochondral tissue engineering.