Premise of the study: Factors affecting floral receptivity in angiosperms remain opaque, but recent studies suggest that the acquisition of stigmatic receptivity associated with cell-wall-related arabinogalactan proteins (AGPs) may be a widespread feature of flowering plants. Here, the time during which a stigma is receptive is evaluated and related to the secretion of AGPs in Magnolia virginiana, a protogynous member of an early-divergent angiosperm clade (magnoliids) with a clearly discernible female receptive phase.
Methods: Magnolia virginiana flower phenology was documented, and histochemical changes in the stigma before and after pollination were examined. Stigmatic receptivity was evaluated in relation to the secretion of AGPs detected in whole mounts and immunolocalized in sectioned stigmas.
Key results: Protogynous Magnolia flowers had a precise window of stigmatic receptivity, which is concomitant with the secretion of two AGPs labeled for different epitopes. After pollen germination and tube growth, these two AGPs could no longer be detected in the stigmas, suggesting that these AGPs interact with the growing male gametophytes and could be markers of stigmatic receptivity.
Conclusions: These results show that the period of stigmatic receptivity is finely coordinated with the secretion of two arabinogalactan proteins on stigmas of flowers of M. virginiana. This first report of AGP presence in stigmatic tissues in a member of the magnoliids, together with recently described similar patterns in eudicots, monocots, and members of early-divergent lineages of flowering plants, suggests an ancient and widespread role for AGPs on stigmatic receptivity in angiosperms.
Keywords: AGPs; Magnolia; Magnoliaceae; arabinogalactan proteins; flowering; pollen; protogyny; receptivity; stigma; stigmatic receptivity.
© 2014 Botanical Society of America, Inc.