The hypothesis of this study was that broader patterns of physiological channel interactions in the local region of the cochlea are associated with poorer spectral resolution in the same region. Electrically evoked compound action potentials (ECAPs) were measured for three to six probe electrodes per subject to examine the channel interactions in different regions across the electrode array. To evaluate spectral resolution at a confined location within the cochlea, spectral-ripple discrimination (SRD) was measured using narrowband ripple stimuli with the bandwidth spanning five electrodes: Two electrodes apical and basal to the ECAP probe electrode. The relationship between the physiological channel interactions, spectral resolution in the local cochlear region, and vowel identification was evaluated. Results showed that (1) there was within- and across-subject variability in the widths of ECAP channel interaction functions and in narrowband SRD performance, (2) significant correlations were found between the widths of the ECAP functions and narrowband SRD thresholds, and between mean bandwidths of ECAP functions averaged across multiple probe electrodes and broadband SRD performance across subjects, and (3) the global spectral resolution reflecting the entire electrode array, not the local region, predicts vowel identification.