A surface that resists protein adsorption and cell adhesion is highly desirable for many biomedical applications such as blood-contact devices and biosensors. In this study, we fabricated a carboxybetaine-containing surface and evaluated its antifouling efficacy. First, an amine-containing substrate was created by chemical vapor deposition of 4-aminomethyl-p-xylylene-co-p-xylylene (Amino-PPX). Aldehyde-ended carboxybetaine molecules were synthesized and conjugated onto Amino-PPX. The carboxybetaine-PPX surface greatly reduced protein adsorption and cell adhesion. The attachment of L929 cells on the carboxybetaine-PPX surface was reduced by 87% compared to the cell adhesion on Amino-PPX. Furthermore, RGD peptides could be conjugated on carboxybetaine-PPX to mediate specific cell adhesion. In conclusion, we demonstrate that a surface decoration with monocarboxybetaine molecules is useful for antifouling applications.