Methylated DNA-binding protein (MDBP) from mammalian cells binds specifically to six pBR322 and M13mp8 DNA sequences but only when they are methylated at their CpG dinucleotide pairs. We cloned three high-affinity MDBP recognition sites from the human genome on the basis of their binding to MDBP. These showed much homology to the previously characterized prokaryotic sites. However, the human sites exhibited methylation-independent binding apparently because of the replacement of m5C residues with T residues. We also identified three other MDBP sites in the herpes simplex virus type 1 genome, two of which require in vitro CpG methylation for binding and are in the upstream regions of viral genes. A comparison of MDBP sites leads to the following partially symmetrical consensus sequence for MDBP recognition sites: 5'-R T m5Y R Y Y A m5Y R G m5Y R A Y-3'; m5Y (m5C or T), R (A or G), Y (C or T). This consensus sequence displays an unusually high degree of degeneracy. Also, interesting deviations from this consensus sequence, including a one base-pair deletion in the middle, are sometimes observed in high-affinity MDBP sites.