Natural killer cell receptor protein 1 (NKR-P1) molecules are C-type lectin-like receptors modulating cellular responses toward target cells expressing C-type lectin-like related (Clr) molecules. Although the function of the prototypic rat NKR-P1A receptor and its inhibitory counterpart NKR-P1B are known, little is known about NKR-P1F and NKR-P1G apart from their promiscuity for Clr ligands. Here we generated mAbs against both receptors for phenotypic and functional analyses in rat tissues. NKR-P1F induced redirected lysis and robust Ca(2+) signaling in NK cells, which were prevented by simultaneous engagement of NKR-P1G. NKR-P1G also inhibited NK-cell lysis of Clr transfectants. NKR-P1F was expressed by most NK cells and NKR-P1A(+) T cells in all tissues analyzed, and by many NKR-P1A(-) intestinal T cells, while NKR-P1G was expressed by subsets of these cells with highest prevalence in gut and liver. In the intraepithelial compartment, the proportion of NKR-P1A(+) and NKR-P1F(+) cells was high at birth and thereafter declined, while NKR-P1B(+) and NKR-P1G(+) cells increased with age. Expression levels were also modulated by cytokines, with an increase of NKR-P1B and NKR-P1G induced by inflammatory cytokines, and a reduction of NKR-P1A by TGF-β. The physiological impact of NKR-P1 receptors might thus be dependent on age, tissue, and inflammatory status.
Keywords: C-type lectin-related molecules; NK-cell receptors; NKR-P1; Rodent.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.