Mitogen-activated protein kinase (MAPK) activation controls diverse cellular functions including cellular survival, proliferation, and apoptosis. Tuning of MAPK activation is counter-regulated by a family of dual-specificity phosphatases (DUSPs). IL-33 is a recently described cytokine that initiates Th2 immune responses through binding to a heterodimeric IL-33Rα (ST2L)/IL-1α accessory protein (IL-1RAcP) receptor that coordinates activation of ERK and NF-κB pathways. We demonstrate here that DUSP5 is expressed in eosinophils, is upregulated following IL-33 stimulation and regulates IL-33 signaling. Dusp5(-/-) mice have prolonged eosinophil survival and enhanced eosinophil effector functions following infection with the helminth Nippostrongylus brasiliensis. IL-33-activated Dusp5(-/-) eosinophils exhibit increased cellular ERK1/2 activation and BCL-XL expression that results in enhanced eosinophil survival. In addition, Dusp5(-/-) eosinophils demonstrate enhanced IL-33-mediated activation and effector functions. Together, these data support a role for DUSP5 as a novel negative regulator of IL-33-dependent eosinophil function and survival.
Keywords: BCL‐XL; dual‐specificity phosphatase 5; eosinophil survival.
© 2014 Genentech Inc.