Copper chalcogenide nanostructures (e.g. one-dimensional nanotubes) have been the focus of interest because of their unique properties and great potential in various applications. Their current fabrications mainly rely on high-temperature or complicated processes. Here, with the assistance of theoretical prediction, we prepared Cu(2-x)E (E = S, Se) micro-/nanotubes (NTs) with a hierarchical architecture by using copper nanowires (Cu NWs), stable sulfur and selenium powder as precursors at room temperature. The influence of reaction parameters (e.g. precursor ratio, ligands, ligand ratio, and reaction time) on the formation of nanotubes was comprehensively investigated. The resultant Cu(2-x)E (E = S, Se) NTs were used as counter electrodes (CE) of quantum-dot-sensitized solar cells (QDSSCs) to achieve a conversion efficiency (η) of 5.02 and 6.25%, respectively, much higher than that of QDSSCs made with Au CE (η = 2.94%).
Keywords: copper chalcogenides; counter electrodes; nanotubes; quantum dots; room-temperature synthesis.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.