We present a simple method to accurately measure the frequency noise power spectrum of lasers. It relies on creating the beat note between two lasers, capturing the corresponding signal in the time domain, and appropriately postprocessing the data to derive the frequency noise power spectrum. In contrast to methods already established, it does not require stabilization of the laser to an optical reference, i.e., a second laser, to an optical cavity or to an atomic transition. It further omits a frequency discriminator and hence avoids bandwidth limitation and nonlinearity effects common to high-resolution frequency discriminators.