Tetracyclic heterocycles that exhibit high photoluminescence quantum yields were synthesized by anellation reactions of mono-, di-, and trifunctionalized 2,3-dichloroquinoxalines. Thus, treatment of 2,3-dichloroquinoxaline with TMPLi (TMP = 2,2,6,6-tetramethylpiperidyl) allows a regioselective lithiation in position 5. Quenching with various electrophiles (iodine, (BrCl2 C)2 , allylic bromide, acid chloride, aryl iodide) leads to 5-functionalized 2,3-dichloroquinoxalines. Further functionalization in positions 6 and 8 can be achieved by using TMPLi or TMPMgCl⋅LiCl furnishing a range of new di- and tri-functionalized 2,3-dichloroquinoxalines. The chlorine atoms are readily substituted by anellation with 1,2-diphenols or 1,2-dithiophenols leading to a series of new tetracyclic compounds. These materials exhibit strong, tunable optical absorption and emission in the blue and green spectral region. The substituted O-heterocyclic compounds exhibit particularly high photoluminescence quantum yields of up to 90%, which renders them interesting candidates for fluorescence imaging applications.
Keywords: anellation; fluorescence; functionalization; metalation; photoluminescence; quantum yield.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.