Background and purpose: Nuciferine, a constituent of lotus leaf, is an aromatic ring-containing alkaloid, with antioxidative properties. We hypothesize nuciferine might affect vascular reactivity. This study aimed at determining the effects of nuciferine on vasomotor tone and the underlying mechanism
Experimental approach: Nuciferine-induced relaxations in rings of rat main mesenteric arteries were measured by wire myographs. Endothelial NOS (eNOS) was determined by immunoblotting. Intracellular NO production in HUVECs and Ca(2+) level in both HUVECs and vascular smooth muscle cells (VSMCs) from rat mesenteric arteries were assessed by fluorescence imaging.
Key results: Nuciferine induced relaxations in arterial segments pre-contracted by KCl or phenylephrine. Nuciferine-elicited arterial relaxations were reduced by removal of endothelium or by pretreatment with the eNOS inhibitor L-NAME or the NO-sensitive guanylyl cyclase inhibitor ODQ. In HUVECs, the phosphorylation of eNOS at Ser(1177) and increase in cytosolic NO level induced by nuciferine were mediated by extracellular Ca(2+) influx. Under endothelium-free conditions, nuciferine attenuated CaCl2-induced contraction in Ca(2+)-free depolarizing medium. In the absence of extracellular calcium, nuciferine relieved the vasoconstriction induced by phenylephrine and the addition of CaCl2. Nuciferine also suppressed Ca(2+) influx in Ca(2+)-free K(+)-containing solution in VSMCs.
Conclusions and implications: Nuciferine has a vasorelaxant effect via both endothelium-dependent and -independent mechanisms. These results suggest that nuciferine may have a therapeutic effect on vascular diseases associated with aberrant vasoconstriction.
© 2014 The British Pharmacological Society.