Phosphorylation of hnRNP K by cyclin-dependent kinase 2 controls cytosolic accumulation of TDP-43

Hum Mol Genet. 2015 Mar 15;24(6):1655-69. doi: 10.1093/hmg/ddu578. Epub 2014 Nov 19.

Abstract

Cytosolic accumulation of TAR DNA binding protein 43 (TDP-43) is a major neuropathological feature of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). However, the mechanisms involved in TDP-43 accumulation remain largely unknown. Previously, we reported that inhibitors of cyclin-dependent kinases (CDKs) prevented cytosolic stress granule accumulation of TDP-43, correlating with depletion of heterogeneous ribonucleoprotein (hnRNP) K from stress granules. In the present study, we further investigated the relationship between TDP-43 and hnRNP K and their control by CDKs. Inhibition of CDK2 abrogated the accumulation of TDP-43 into stress granules. Phosphorylated CDK2 co-localized with accumulated TDP-43 and phosphorylated hnRNP K in stress granules. Inhibition of CDK2 phosphorylation blocked phosphorylation of hnRNP K, preventing its incorporation into stress granules. Due to interaction between hnRNP K with TDP-43, the loss of hnRNP K from stress granules prevented accumulation of TDP-43. Mutation of Ser216 and Ser284 phosphorylation sites on hnRNP K inhibited hnRNP K- and TDP-43-positive stress granule formation in transfected cells. The interaction between hnRNP K and TDP-43 was further confirmed by the loss of TDP-43 accumulation following siRNA-mediated inhibition of hnRNP K expression. A substantial decrease of CDK2 and hnRNP K expression in spinal cord motor neurons in ALS patients demonstrates a potential key role for these proteins in ALS and TDP-43 accumulation, indicating that further investigation of the association between hnRNP K and TDP-43 is warranted. Understanding how kinase activity modulates TDP-43 accumulation may provide new pharmacological targets for disease intervention.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyotrophic Lateral Sclerosis / genetics
  • Amyotrophic Lateral Sclerosis / metabolism*
  • Animals
  • Cyclin-Dependent Kinase 2 / metabolism*
  • Cytosol / metabolism
  • DNA-Binding Proteins / metabolism*
  • Gene Expression
  • Heterogeneous-Nuclear Ribonucleoprotein K / genetics
  • Heterogeneous-Nuclear Ribonucleoprotein K / metabolism*
  • Humans
  • Mice
  • Mutation, Missense
  • Phosphorylation

Substances

  • DNA-Binding Proteins
  • Heterogeneous-Nuclear Ribonucleoprotein K
  • Cyclin-Dependent Kinase 2