Background: Although a higher consumption of alcohol, which is a methyl-group antagonist, was previously associated with colorectal cancer risk, mechanisms remain poorly understood.
Objective: We hypothesized that excess alcohol consumption might increase risk of colorectal carcinoma with hypomethylation of insulin-like growth factor 2 (IGF2) differentially methylated region-0 (DMR0), which was previously associated with a worse prognosis.
Design: With the use of a molecular pathologic epidemiology database in 2 prospective cohort studies, the Nurses' Health Study and Health Professionals Follow-up Study, we examined the association between alcohol intake and incident colorectal cancer according to the tumor methylation level of IGF2 DMR0. Duplication-method Cox proportional cause-specific hazards regression for competing risk data were used to compute HRs and 95% CIs. In addition, we investigated intakes of vitamin B-6, vitamin B-12, methionine, and folate as exposures.
Results: During 3,206,985 person-years of follow-up, we identified 993 rectal and colon cancer cases with an available tumor DNA methylation status. Compared with no alcohol consumption, the consumption of ≥15 g alcohol/d was associated with elevated risk of colorectal cancer with lower levels of IGF2 DMR0 methylation [within the first and second quartiles: HRs of 1.55 (95% CI: 1.08, 2.24) and 2.11 (95% CI: 1.44, 3.07), respectively]. By contrast, alcohol consumption was not associated with cancer with higher levels of IGF2 DMR0 methylation. The association between alcohol and cancer risk differed significantly by IGF2 DMR0 methylation level (P-heterogeneity = 0.006). The association of vitamin B-6, vitamin B-12, and folate intakes with cancer risk did not significantly differ according to IGF2 DMR0 methylation level (P-heterogeneity > 0.2).
Conclusions: Higher alcohol consumption was associated with risk of colorectal cancer with IGF2 DMR0 hypomethylation but not risk of cancer with high-level IGF2 DMR0 methylation. The association between alcohol intake and colorectal cancer risk may differ by tumor epigenetic features.
Keywords: biomarker; epigenetics; imprinting; molecular pathological epidemiology; one carbon metabolism.
© 2014 American Society for Nutrition.