Determination of tumor genetic architecture based on tissue analysis yields important information on signaling pathways involved in cancer pathogenesis and plays a growing role in choosing the optimal medical management of malignancies. Specifically, the advent of next-generation sequencing has led to a rapidly evolving era of relatively inexpensive, high-throughput DNA sequencing of tumors. One such example is multiplexed tumor genotyping (ie, panel testing) of more than 2800 mutations across 50 commonly mutated cancer-associated genes. This resulting mutational landscape shows medically actionable pathogenic alterations to optimize antitumor therapy. We recently assessed the performance and outcome of targeted next-generation sequencing with archived endoscopic ultrasound fine-needle aspirates across a broad range of primary and metastatic sites with encouraging accuracy. As a result, endoscopic ultrasound has the potential to move from a test for diagnosis or confirmation of malignancy, to one in which it could facilitate the personalization of cancer-directed therapy.
Keywords: Endoscopic Ultrasound Fine-Needle Aspiration; Individualized Medicine; Malignant Cytology; Targeted Next-Generation Sequencing; Theranostics.
Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.