Background: Essential oil components (EOCs) are known for their antifungal properties; however, their high volatility limits their application as antimicrobial agents. Strategies used for controlling the volatility of EOCs include encapsulation or loading into porous materials. This study evaluated the in vitro antifungal activity of selected EOCs (carvacrol, cinnamaldehyde, eugenol and thymol) against the fungus Aspergillus niger when loaded into MCM-41 and β-cyclodextrin (β-CD).
Results: Carvacrol and thymol in Mobil Composition of Matter No. 41 (MCM-41) displayed remarkable enhanced antifungal properties in comparison to the pure or β-CD-encapsulated EOCs. In fact, carvacrol and thymol were able to maintain antifungal activity and inhibit fungal growth for 30 days, suggesting better applicability of these EOCs as natural preservatives.
Conclusions: The sustained antifungal effect of EOCs encapsulated into silica mesoporous supports was described.
Keywords: antifungal activity; controlled release; cyclodextrin; encapsulation; essential oil components; mesoporous silica materials.
© 2014 Society of Chemical Industry.