This study examined the effect on glycogen resynthesis during recovery from exercise of feeding glucose orally to physically trained rats which had been fed for 5 weeks on high-protein low fat (HP), high-protein/long-chain triglyceride (LCT) or high carbohydrate (CHO) diets. Muscle glycogen remained low and hepatic gluconeogenesis was stimulated by long-term fat or high-protein diets. The trained rats received, via a stomach tube, 3 ml of a 34% glucose solution immediately after exercise (2 h at 20 m.min-1), followed by 1-ml portions at hourly intervals until the end of the experiments. When fed glucose soleus muscle glycogen overcompensation occurred rapidly in the rats fed all three diets following prolonged exercise. In LCT- and CHO-fed rats, glucose feeding appeared more effective for soleus muscle repletion than in HP-fed rats. The liver demonstrated no appreciable glycogen overcompensation. A complete restoration of liver glycogen occurred within a 2- to 4-h recovery period in the rats fed HP-diet, while the liver glycogen store had been restored by only 67% in CHO-fed rats and 84% in LCT-fed rats within a 6-h recovery period. This coincides with low gluconeogenesis efficiency in these animals.