Therapeutic cancer vaccines are an attractive alternative to conventional therapies to treat malignant tumors, and more importantly, to prevent recurrence after primary therapy. However, the availability of professional antigen-presenting cells (APCs) has been restricted by difficulties encountered in obtaining sufficient professional APCs for clinical use. We have prepared an alternative cellular vaccine with CD4 T-cells that can be expanded easily to yield a pure and homogeneous population in vitro. To enhance their potency as a therapeutic vaccine, in vitro expanded CD4 T-cells were transfected with RNAs encoding the costimulatory ligands CD80, 4-1BBL, or both (CD80-T, 4-1BBL-T, and CD80/4-1BBL-T-cells, respectively). We observed augmented cell vitality in CD80/4-1BBL-T-cells in vitro and in vivo. Significant CD8 T-cell responses eliciting in vivo proliferation and cytotoxicity were obtained with CD80/4-1BBL-T-cell vaccination compared to CD80-T and 4-1BBL-T-cell vaccinations. In contrast, β2m-deficient CD80/4-1BBL-T-cells were not as effective as wile-type CD80/4-1BBL-T-cells in priming CD8 T-cells. Furthermore, CD80/4-1BBL-T-cell immunization resulted in curing established EG7 tumors, resulting in the generation of memory CD8 T-cell responses, and elicited therapeutic antitumor responses against B16 melanoma. These results suggest that CD4 T-cells endowed with costimulatory ligands allow the design of effective vaccination strategies against cancer.
Keywords: CD4 T-cells; Cancer vaccine; Costimulatory ligand; Tumor immunity.
Copyright © 2014 Elsevier Ltd. All rights reserved.