Predicting demographic consequences of climate change for plant communities requires understanding which factors influence seed set, and how climate change may alter those factors. To determine the effects of pollen availability, temperature, and pollinators on seed production in the alpine, we combined pollen-manipulation experiments with measurements of variation in temperature, and abundance and diversity of potential pollinators along a 400-m elevation gradient. We did this for seven dominant species of flowering plants in the Coast Range Mountains, British Columbia, Canada. The number of viable seeds set by plants was influenced by pollen limitation (quantity of pollen received), mate limitation (quality of pollen), temperature, abundance of potential pollinators, seed predation, and combinations of these factors. Early flowering species (n = 3) had higher seed set at high elevation and late-flowering species (n = 4) had higher seed set at low elevation. Degree-days >15 °C were good predictors of seed set, particularly in bee-pollinated species, but had inconsistent effects among species. Seed production in one species, Arnica latifolia, was negatively affected by seed-predators (Tephritidae) at mid elevation, where there were fewer frost-hours during the flowering season. Anemone occidentalis, a fly-pollinated, self-compatible species had high seed set at all elevations, likely due to abundant potential pollinators. Simultaneously measuring multiple factors affecting reproductive success of flowering plants helped identify which factors were most important, providing focus for future studies. Our work suggests that responses of plant communities to climate change may be mediated by flowering time, pollination syndrome, and susceptibility to seed predators.