The amplitude of the Hoffmann (H)-reflex in the soleus (Sol) muscle is known to be suppressed during passive stepping compared with during passive standing. The reduction of the H-reflex is not due to load-related afferent inputs, but rather to movement-related afferent inputs from the lower limbs. To elucidate the underlying neural mechanisms of this inhibition, we investigated the effects of the stepping velocity on the Sol H-reflex during robot-assisted passive stepping in 11 healthy subjects. The Sol H-reflexes were recorded during passive standing and stepping at five stepping velocities (stride frequencies: 14, 21, 28, 35, and 42 min(-1)) in the air. The Sol H-reflexes were significantly inhibited during passive stepping as compared with during passive standing, and reduced in size as the stepping velocity increased. These results indicate that the extent of H-reflex suppression increases with increasing movement-related afferent inputs from the lower limbs during passive stepping. The velocity dependence suggests that the Ia afferent inputs from lower-limb muscles around the hip and knee joints are most probably related to this inhibition.
Keywords: Afferent input; Hoffmann reflex; Locomotion; Passive stepping; Velocity.
Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.