Cardiac hypertrophy is a major risk factor of cardiovascular morbidity and mortality. Autophagy is established to be involved in regulating cardiac hypertrophy. REDD1, a stress-responsive protein, is proved to contribute in autophagy induction. However, the role of REDD1 in cardiac hypertrophy remains unknown. Our study demonstrated that REDD1 knockdown by RNAi exacerbated phenylephrine (PE)-induced cardiac hypertrophy, manifested by increased hypertrophic markers such as ANP and cell surface area. In addition, we discovered that ERK1/2 signaling pathway was involved in the effect of REDD1 on hypertrophy. Moreover, our study showed that REDD1 knockdown impaired autophagy in hypertrophied cardiomyocytes. mTOR, a signaling molecule governing autophagy induction, was activated by the knockdown of REDD1 under PE stress. Importantly, the pro-hypertrophic effect of REDD1 knockdown was significantly reversed by the autophagy enhancer rapamycin. Taken together, we firstly prove that REDD1 is essential for inhibiting cardiac hypertrophy by enhancing autophagy.
Keywords: Autophagy; Cardiac hypertrophy; REDD1; mTOR.
Copyright © 2014 Elsevier Inc. All rights reserved.