Diversification of cell size is hypothesized to have occurred through a process of evolutionary optimization, but direct demonstrations of causal relationships between cell geometry and fitness are lacking. Here, we identify a mutation from a laboratory-evolved bacterium that dramatically increases cell size through cytoskeletal perturbation and confers a large fitness advantage. We engineer a library of cytoskeletal mutants of different sizes and show that fitness scales linearly with respect to cell size over a wide physiological range. Quantification of the growth rates of single cells during the exit from stationary phase reveals that transitions between "feast-or-famine" growth regimes are a key determinant of cell-size-dependent fitness effects. We also uncover environments that suppress the fitness advantage of larger cells, indicating that cell-size-dependent fitness effects are subject to both biophysical and metabolic constraints. Together, our results highlight laboratory-based evolution as a powerful framework for studying the quantitative relationships between morphology and fitness.
Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.