Existing biological data on whiting Merlangius merlangus, cod Gadus morhua and haddock Melanogrammus aeglefinus from a long-term international survey were analysed to address sexual size dimorphism (SSD) and its effect on their ecology and management. Results show that SSD, with larger females of the same age as males, is a result of higher growth rates in females. A direct consequence of SSD is the pronounced length-dependent female ratio that was found in all three gadoids in the North Sea. Female ratios of the three species changed from equality to female dominance at specific dominance transition lengths of c. 30, 35 and 60 cm for M. merlangus, G. morhua and M. aeglefinus, respectively. An analysis by area for M. merlangus also revealed length dependence of female ratios. SSD and length-dependent female ratios under most circumstances are inseparable. Higher overall energy demand as well as a higher energy uptake rate must result from the observed SSD and dimorphism in growth rates. Potential processes related to feeding, locomotion and physiology are proposed that could balance the increased energy investment of females. Potential consequences of SSD and length dependency of female ratios are the reduction of the reproductive potential of a stock due to size-selective fishing and biased assessment of the true size of the female spawning stock that could distort decisions in fisheries management.
Keywords: cod; female ratio; growth; haddock; whiting.
© 2014 The Fisheries Society of the British Isles.