Validation of marrow fat assessment using noninvasive imaging with histologic examination of human bone samples

Bone. 2015 Mar:72:118-22. doi: 10.1016/j.bone.2014.11.002. Epub 2014 Nov 12.

Abstract

Purpose: The marrow composition throughout the body is heterogeneous and changes with age. Due to heterogeneity, invasive biopsies of the iliac crest do not truly represent the complete physiological status, impeding the clinical effectiveness of this method. Therefore, we aim to provide verification for an in vivo imaging technique using co-registered histologic examinations for assessment of marrow adiposity.

Methods: Five recently expired (i.e. <24h) human cadavers were scanned with a dual source CT (DECT) scanner in order to measure marrow fat in the lumbar vertebrae. These donors were also imaged using water-fat MRI (wfMRI) which was used to estimate the fraction of yellow marrow. After imaging, lumbar columns were excised and the superior and inferior aspects of 21 vertebrae were removed. The remaining center section was processed for histological examination to find the ratio of adipocyte volume per tissue volume (AV/TV).

Results: Results of DECT and wfMRI had a high correlation (r = 0.88). AV/TV ranged from 0.18 to 0.75 with a mean (SD) of 0.36 (0.18). Inter-evaluator reliability for AV/TV was r > 0.984. There were similar correlations between AV/TV and the imaging modalities, DECT-derived MF and wfMRI (r = 0.802 and 0.772, respectively).

Conclusions: A high MF variation was seen among the 25 vertebrae imaged. Both DECT and wfMRI have a good correlation with the histologic adipocyte proportion and can be used to measure MF. This makes longitudinal studies possible without painful, less-effective, invasive biopsies.

Keywords: DECT; Imaging co-registration; Marrow verification; Water–fat MRI.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipocytes / cytology
  • Adipose Tissue / physiology
  • Bone Marrow / physiology*
  • Bone and Bones / physiology*
  • Cadaver
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Middle Aged
  • Reproducibility of Results
  • Tomography, X-Ray Computed