Using platelet-derived growth factor B chain dimer (PDGF-BB) as the model target, a background current eliminated electrochemical aptameric sensing platform for highly sensitive and signal-on detection of protein is proposed in this paper. Successful fabrication of the biosensor depends on ingenious design of aptamer probe, which contains the aptamer sequence for PDGF-BB and the recognition sequence for EcoRI endonuclease. In the absence of PDGF-BB, the ferrocene labeled aptamer probe folds into a hairpin structure and forms a recognition site for EcoRI. By treatment with endonuclease, the specific and cleavable double-stranded region is cut off and redox-active ferrocene molecule is removed from the electrode surface, and almost no peak current is observed. When binding with target protein, the designed aptamer probe changes its conformation and dissociates the recognition double strand. The integrated aptamer probe is maintained when exposing to EcoRI endonuclease, resulting in obvious peak current. Therefore, a signal-on and sensitive sensing strategy for PDGF-BB detection is fabricated with eliminated background current. Under the optimized experimental conditions, a wide linear response range of 4 orders of magnitude from 20pgmL(-1) to 200ngmL(-1) is achieved with a detection limit of 10pgmL(-1). Moreover, the present aptameric platform is universal for the analysis of a broad range of target molecules of interest by changing and designing the sequence of aptamer probe.
Keywords: Aptamer; Biosensor; Electrochemical; Endonuclease; PDGF-BB.
Copyright © 2014 Elsevier B.V. All rights reserved.