Activation of white phosphorus by low-valent group 5 complexes: formation and reactivity of cyclo-P4 inverted sandwich compounds

J Am Chem Soc. 2014 Dec 17;136(50):17652-61. doi: 10.1021/ja5107282. Epub 2014 Dec 3.

Abstract

We report the synthesis and comprehensive study of the electronic structure of a unique series of dinuclear group 5 cyclo-tetraphosphide inverted sandwich complexes. White phosphorus (P4) reacts with niobium(III) and tantalum(III) β-diketiminate (BDI) tert-butylimido complexes to produce the bridging cyclo-P4 phosphide species {[(BDI)(N(t)Bu)M]2(μ-η(3):η(3)P4)} (1, M = Nb; 2, M = Ta) in fair yields. 1 is alternatively synthesized upon hydrogenolysis of (BDI)Nb(N(t)Bu)Me2 in the presence of P4. The trinuclear side product {[(BDI)NbN(t)Bu]3(μ-P12)} (3) is also identified. Protonation of 1 with [HOEt2][B(C6F5)4] does not occur at the phosphide ring but rather involves the BDI ligand to yield {[(BDI(#))Nb(N(t)Bu)]2(μ-η(3):η(3)P4)}[B(C6F5)4]2 (4). The monocation and dication analogues {[(BDI)(N(t)Bu)Nb]2(μ-η(3):η(3)P4)}{B(Ar(F))4}n (5, n = 1; 6, n = 2) are both synthesized by oxidation of 1 with AgBAr(F). DFT calculations were used in combination with EPR and UV-visible spectroscopies to probe the nature of the metal-phosphorus bonding.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computer Simulation
  • Coordination Complexes / chemistry*
  • Crystallography, X-Ray
  • Cyclization
  • Molecular Structure
  • Oxidation-Reduction
  • Phosphorus / chemistry*

Substances

  • Coordination Complexes
  • Phosphorus