Asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic diseases worldwide, characterized by a condition of variable degree of airway obstruction and chronic airway inflammation. A large body of evidence has demonstrated the importance of small airways as a pharmacological target in these clinical conditions. Despite a deeper understanding of the pathophysiological mechanisms, the epidemiological observations show that a significant proportion of asthmatic and COPD patients have a suboptimal (or lack of) control of their diseases. Different factors could influence the effectiveness of inhaled treatment in chronic respiratory diseases: patient-related (eg, aging); disease-related (eg, comorbid conditions); and drug-related/formulation-related factors. The presence of multiple illnesses is common in the elderly patient as a result of two processes: the association between age and incidence of degenerative diseases; and the development over time of complications of the existing diseases. In addition, specific comorbidities may contribute to impair the ability to use inhalers, such as devices for efficient drug delivery in the respiratory system. The inability to reach and treat the peripheral airways may contribute to the lack of efficacy of inhaled treatments. The recent development of inhaled extrafine formulations allows a more uniform distribution of the inhaled treatment throughout the respiratory tree to include the peripheral airways. The beclomethasone/formoterol extrafine formulation is available for the treatment of asthma and COPD. Different biomarkers of peripheral airways are improved by beclomethasone/formoterol extrafine treatment in comparison with equivalent nonextrafine inhaled corticosteroids/long-acting beta-2 agonist (ICS/LABA) combinations. These improvements are associated with improved lung function and clinical outcomes, along with reduced systemic exposure to inhaled corticosteroids. The increased knowledge in the pathophysiology of the peripheral airways may lead to identify specific phenotypes of obstructive lung diseases that would mostly benefit from the treatments specifically targeting the peripheral airways.
Keywords: COPD; asthma; inhalational therapy; small airways.