Background and purpose: Developmental venous anomalies are the most common intracranial vascular malformation and are typically regarded as inconsequential, especially when small. While there are data regarding the prevalence of MR imaging findings associated with developmental venous anomalies, FDG-PET findings have not been well-characterized.
Materials and methods: Clinical information systems were used to retrospectively identify patients with developmental venous anomalies depicted on MR imaging examinations who had also undergone FDG-PET. Both the MR imaging and FDG-PET scans were analyzed to characterize the developmental venous anomalies and associated findings on the structural and functional scans. Qualitative and quantitative assessments were performed, including evaluation of the size of the developmental venous anomaly, associated MR imaging findings, and characterization of the FDG uptake in the region of the developmental venous anomaly.
Results: Twenty-five developmental venous anomalies in 22 patients were identified that had been characterized with both MR imaging and FDG-PET, of which 76% (19/25) were associated with significant metabolic abnormality in the adjacent brain parenchyma, most commonly hypometabolism. Patients with moderate and severe hypometabolism were significantly older (moderate: mean age, 65 ± 7.4 years, P = .001; severe: mean age, 61 ± 8.9 years, P = .008) than patients with developmental venous aberrancies that did not have abnormal metabolic activity (none: mean age, 29 ± 14 years).
Conclusions: Most (more than three-quarters) developmental venous anomalies in our series of 25 cases were associated with metabolic abnormality in the adjacent brain parenchyma, often in the absence of any other structural abnormality. Consequently, we suggest that developmental venous anomalies may be better regarded as developmental venous aberrancies.
© 2015 by American Journal of Neuroradiology.