Background: Self-collected human papillomavirus (HPV) testing could reduce barriers to cervical cancer screening, with performance comparable to clinician-collected specimens. The ability of self-collected specimens to cross-sectionally and prospectively detect precursor lesions was investigated in an HPV vaccine randomized trial in Costa Rica.
Methods: In the trial, 7466 women age 18 to 25 years received an HPV16/18 or control vaccine and were followed at least annually for four years. In this secondary analysis, we included all women who provided a self-collected cervicovaginal specimen six months after enrollment (5109 women = full analytical cohort). A subset (615 women = restricted cohort) also had clinician-collected specimens at the six-month postenrollment visit. High-grade squamous intraepithelial lesion or repeat low-grade squamous intraepithelial lesion prompted colposcopic referral throughout the study. HPV testing was performed with SPF10PCR/DEIA/LiPA25. Cross-sectional and prospective sensitivity, specificity, and predictive values were estimated.
Results: In the full cohort, one-time HPV testing on self-collected samples detected prevalent CIN2+ with a sensitivity of 88.7% (95% confidence interval [CI] =77.0% to 95.7%) and a specificity of 68.9% (95% CI = 67.6% to 70.1%). For predicting incident CIN2+ in the subsequent four years, sensitivity was 73.9% (95% CI = 65.8% to 81.0%) and specificity 69.4% (95% CI = 68.1% to 70.7%). In the restricted cohort, for incident CIN2+, self-collected HPV was much more sensitive than cytology (80.0% vs 10.0%); relative sensitivity was 0.1 (95% CI = 0.03% to 0.5%). Furthermore, three times more women with normal baseline cytology developed incident CIN2+ than those with negative self-collected HPV. Self-collected and clinician-collected HPV testing had comparable performance. Agreement between self- and clinician-collected samples was 89.7% (kappa = 0.78, McNemar χ2 = 0.62) for carcinogenic HPV types.
Conclusions: Self-collected specimens can be used for HPV-based screening, providing sensitivity and specificity comparable with clinician-collected specimens and detecting disease earlier than cytology.
© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: [email protected].