The H1N1 influenza pandemic of 2009 stimulated interest in developing safe and effective subunit influenza vaccines using rapid and cost-effective recombinant technologies that can avoid dependence on hens' eggs supply and live viruses for production. Among alternative approaches to subunit vaccine development, virus-like particles (VLPs) represent an attractive strategy due to their safety and immunogenicity. Previously, we have produced a recombinant monomeric hemagglutinin (HA) protein derived from the A/California/04/09 (H1N1) strain of influenza virus in a plant-based transient expression system and demonstrated immunogenicity and safety of this monomeric HA in animal models and human volunteers. In an effort to produce higher potency influenza vaccine in plants, we have designed and generated enveloped VLPs using the ectodomain of HA from the A/California/04/09 strain and heterologous sequences. The resulting H1 HA VLPs (HAC-VLPs) elicited robust hemagglutination inhibition antibody responses in mice at doses lower than 1 µg in the presence or absence of Alhydrogel adjuvant. These results suggest enhanced immunogenicity of recombinant HA in the form of an enveloped VLP over soluble antigen.
Keywords: hemagglutinin; influenza; plant-based production; subunit vaccine; transient expression; virus-like particle.