A Magic-Angle Spinning NMR Method for the Site-Specific Measurement of Proton Chemical-Shift Anisotropy in Biological and Organic Solids

Isr J Chem. 2014 Feb 1;54(1-2):171-183. doi: 10.1002/ijch.201300099.

Abstract

Proton chemical shifts are a rich probe of structure and hydrogen bonding environments in organic and biological molecules. Until recently, measurements of 1H chemical shift tensors have been restricted to either solid systems with sparse proton sites or were based on the indirect determination of anisotropic tensor components from cross-relaxation and liquid-crystal experiments. We have introduced an MAS approach that permits site-resolved determination of CSA tensors of protons forming chemical bonds with labeled spin-1/2 nuclei in fully protonated solids with multiple sites, including organic molecules and proteins. This approach, originally introduced for the measurements of chemical shift tensors of amide protons, is based on three RN-symmetry based experiments, from which the principal components of the 1H CS tensor can be reliably extracted by simultaneous triple fit of the data. In this article, we expand our approach to a much more challenging system involving aliphatic and aromatic protons. We start with a review of the prior work on experimental-NMR and computational-quantum-chemical approaches for the measurements of 1H chemical shift tensors and for relating these to the electronic structures. We then present our experimental results on U-13C,15N-labeled histdine demonstrating that 1H chemical shift tensors can be reliably determined for the 1H15N and 1H13C spin pairs in cationic and neutral forms of histidine. Finally, we demonstrate that the experimental 1H(C) and 1H(N) chemical shift tensors are in agreement with Density Functional Theory calculations, therefore establishing the usefulness of our method for characterization of structure and hydrogen bonding environment in organic and biological solids.

Keywords: NMR spectroscopy; chemical shift anisotropy; density functional theory calculations; magic angle spinning.