Aim: To compare non-linear and linear image-blending post-processing techniques in dual-energy CT (DECT) of primary head and neck squamous cell carcinoma (SCC) regarding subjective and objective image quality.
Materials and methods: Head and neck DECT studies from 69 patients (48 male, 21 female; mean age 62.3 years) were retrospectively evaluated. All tumour lesions were histologically confirmed SCC. Linearly blended 80/140 kVp images series with varying weighting factors of 0.3 (M_0.3), 0.6 and 0.8 were compared with non-linearly blended images. Attenuation of tumour lesion, various soft-tissue structures, the internal jugular vein, and image noise were measured, tumour signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Overall image quality, delineation of tumour lesion, image sharpness, and noise level were rated individually by three radiologists using five-point Likert scales. Interobserver agreement was calculated using intraclass correlation coefficient (ICC).
Results: Enhancement of tumour lesions (non-linear, 137.5 ± 20.1 HU; M_0.3, 92.7 ± 14.4 HU; M_0.6, 110 ± 15.4 HU; M_0.8, 123 ± 18.2 HU), CNR (non-linear, 12 ± 8; M_0.3, 4 ± 4.7; M_0.6, 7.5 ± 5.5; M_0.8, 8 ± 5.5), subjective overall image quality and tumour delineation were significantly increased (all p < 0.001) with the non-linear blending technique compared to all investigated linear blending weighting factors. Overall interobserver agreement was substantial (ICC 0.70; 95% CI: 0.66-0.73).
Conclusion: Post-processing of DECT using a non-linear blending technique provides improved objective and subjective image quality of head and neck SCC compared to linearly blended images series.
Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.