TARP [transmembrane AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor regulatory protein] γ-8 is an auxiliary subunit of AMPA receptors that is widely distributed in the hippocampus. It has been shown that TARP γ-8 promotes surface expression of AMPA receptors; however, how TARP γ-8 regulates the expression of AMPA receptors remains unclear. In the present study, we examined the effect of TARP glycosylation on AMPA receptor trafficking. We first showed that TARP γ-8 is an N-glycosylated protein, which contains two glycosylation sites, Asn53 and Asn56, and compared this with the glycosylation of TARP γ-2 and the AMPA receptor auxiliary protein CNIH-2 (cornichon homologue 2). We next examine the effect of TARP glycosylation on TARP trafficking and also on AMPA receptor surface expression. We find that TARP γ-8 glycosylation is critical for surface expression of both TARP γ-8 and GluA1 in heterologous cells and neurons. Specifically, knockdown of TARP γ-8 causes a decrease in both total and surface AMPA receptors. We find that the expression of unglycosylated TARP γ-8 in cultured neurons is unable to restore GluA1 expression fully. Furthermore, when the maturation of TARP γ-8 is impaired, a large pool of immature GluA1 is retained intracellularly. Taken together, our data reveal an important role for the maturation of TARP γ-8 in the trafficking and function of the AMPA receptor complex.